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Quality of CO2 source/sink estimates 
depends on:
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• instrument characteristics
• radiative transfer algorithm
• retrieval algorithms
• assimilation method
• chemistry and transport model
• atmospheric conditions (affects retrieval sensitivity)

Region Biosph
Tg c/yr

Combust
Tg c/yr

USA-48 205 5220

Alaska 160 75

Russia -1220 1800
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Instrument  characteristics
- AIRS, IASI, GOSAT, and TES instruments at mid-infrared  (700 cm-1):

Native 
resolution

S/N @
native

S/N 
@ 0.5 cm-1

AIRS 0.5 cm-1 ~525 ~525*

IASI 0.5 cm-1 ~225 ~225**

GOSAT 0.2 cm-1 >300*** >475

TES 0.1 cm-1 ~80 ~200****

* http://airs.jpl.nasa.gov/technology/specifications/  with 0.35K @ 250K; 9 footprint ave
** Crevoisier et al., 2009 0.22K error at 700 cm-1
*** http://www.jaxa.jp/press/2009/02/20090209_ibuki_e.html, infrared band average
**** Shephard et al., 2008 table 2, with 0.3K @250K at AIRS resolution
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Retrieval approach
- Based on the optimal estimation framework (Rodgers, 2000), temperature, 

H2O, CO2, cloud and surface parameters are jointly retrieved

- Optimal estimation framework provides a characterization of CO2 estimates 
in terms of the accuracy, precision (Bowman, 2006; Worden, 2004):

• Joint temperature, H2O, CO2 retrievals
– Minimizes temperature, water bias 

• Choice of windows
– Choose broad set of windows in ν2 and laser bands
– Remove spectral areas that are not well fit

• Constraints based on altitude-dependent Tikhonov (Kulawik et al. 2006)
– Use 6% variability near surface and 2% higher
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Radiance

680 700 720 740 760

Frequency (cm
-1
)

4
5
6
7
8
9

1
0

-
6
 
W
/
c
m

2
/
s
r
/
c
m

-
1

 

970 975 980 985 990

Frequency (cm
-1
)

5.8
6.0
6.2
6.4
6.6
6.8

1
0

-
6
 
W
/
c
m

2
/
s
r
/
c
m

-
1

 

1070 1080 1090 1100 1110

Frequency (cm
-1
)

3.5

4.0

4.5

5.0

1
0

-
6
 
W
/
c
m

2
/
s
r
/
c
m

-
1

Information at infrared wavelengths
radiances and Jacobians
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Jacobians show the sensitivity 
of radiances to changes in 
CO2.   This location shows the 
change in radiance at 715 cm-1

when CO2 at 5 km is changed

10

15

20

0.00

0.25

0.50

0.75

1.00

S
e
n
s
i
t
i
v
i
t
y

-
-
-
-

ν2 band is mainly sensitive to 
CO2 in the middle 
Troposphere through the 
lower Stratosphere

Laser bands are sensitive to 
middle Troposphere and 
below

Jacobian[ν,z]  =  d(Radiance[ν]) / dln(CO2[z]) / radiance_noise[ν]
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Change in TES calculated radiance when boundary layer values (0-2 
km) or mid-Troposphere (4-8 km) are changed for optimal boundary 
layer viewing conditions (e.g. high thermal contrast):

We find that 1K temperature bias propagates into a 25 ppm CO2 bias

Errors in CO2 estimates strongly depend on the 
accuracy of temperature and water vapor
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TES CO2 Errors 
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Typical TES single target errors

• Estimated TES single target 
error in the middle troposphere 
is ~8 ppm.  

• Uncertainties in temperature 
and retrieval sensitivity 
(smoothing) are the dominant 
errors for CO2 estimates using 
the IR bands TES maximum 

sensitivity
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Averaging targets

• Averaging more targets 
(over a larger spatial 
area) decreases error 
vs. Mauna Loa

• Progression agrees with 
1/sqrt(N) reduction in 
error for averages

S. Kulawik – March, 2009
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Tropospheric Emission Spectrometer CO2
Observed yearly and seasonal variations are consistent with
in situ datau

Monthly averages of ~200 targets
Monthly mean error is 0.9 ppm with 5.6 ppm bias
Bias close to estimated spectroscopic error  of ~4 ppm (Devi, 2003)
Greatest sensitivity in middle Troposphere (500 mb)
Validated for low O.D. cloud, ocean, 40S to 40N

TES CO2 at 511 hPa, 15-30N
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Global (40S-40N) TES results

• Comparison of monthly mean TES gridded values (small circles 
and interpolated values at 511 hPa) and ground station data 
(large circles)

• A low bias correction of 5.6 ppm is added to TES CO2
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Approach for estimating CO2 sources & sinks
Observing System Simulation Experiment (OSSE) by Nassar et al., 2009

TES:  20 x 30 degree x 1 month averages 
Errors are driven by number of clear sky 

profiles per bin

GLOBALVIEW:  76 surface stations

MODEL:  GEOS-Chem with NASA GMAO 
met . fields, specialized CO2 source/sink 
inputs

FLUXES
• 14 regions of combustion and terrestrial 

exchange + “rest of world” (29 elements)
• A priori flux uncertainty: 

– 100%  for  terrestrial biosphere

– 30% for combustion
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Estimates of biosphere & ocean fluxes

TES alone:
improves flux uncertainty from 
100% initial uncertainty to 15-
30%

76 surface stations alone (with 0.1 
ppm errors assumed):   
improves flux uncertainty from 
100% initial uncertainty to 15-
30%

Based on this analysis, the information content of TES is comparable to 
surface sites

TES (free troposphere) and surface station (boundary layer) sensitivities 
are complementary

Nassar et al., 2009
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Conclusions

TES observed yearly and seasonal variations are consistent with in situ data 

TES CO2 with error characterization can be used to improve estimates of CO2
sources and sinks

Next steps

Using real TES data for source and sink estimates

Examine the use of other sensors for measuring CO2 profiles to improve source and 
sink estimates

Validation versus aircraft data over land in progress
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Increased sensitivity to boundary layer CO2�
improved CO2 source/sink estimates

- how often does TES observe CO2 in the boundary layer?
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DOF = Trace(A), where A, the averaging kernel, is the sensitivity 
of the retrieved state to the true state, A = dxret/dxtrue
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- highest sensitivity for daytime,  summer; ~5% with better than 0.3 DOF
- 0.3 DOF:  for a 20 ppm enhancement, TES would observe +6 ppm

regional study over U.S. for all seasons
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Boundary layer sensitivity
Summertime land case  (    on previous page)

TES                              improvements

- TES IR measurements (left) can be sensitive to the boundary layer but cannot 
distinguish the boundary layer from the free troposphere

- For 3x increased signal to noise and independently obtained temperature, 
boundary layer CO2 can be discriminated from the free trop. in some cases

3

-0.2 0.0 0.2 0.4 0.6

0

10

20

30

40

50

A
l
t
i
t
u
d
e
 
(
k
m
)

100

10

DOFS 1.0

908 hPa
511 hPa
133 hPa
10 hPa
0.1 hPa

3

-0.2 0.0 0.2 0.4 0.6 0.8

0

10

20

30

40

50

100

10

DOFS 2.8

908 hPa
511 hPa
133 hPa
10 hPa
0.1 hPa

*

Kevin Bowman – ASSFTS 14



GOSAT temperature study
• Uncertainty in temperature propagates into CO2

• 1K bias error � up to 60 ppm errors in CO2

• Simulation study

Error in CO2  (%)

http://www.gosat.nies.go.jp/eng/proposal/download/WS/05_Imasu.pdf
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